Termination of the following Term Rewriting System could be proven:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

The replacement map contains the following entries:

U11: {1}
tt: empty set
U12: {1}
isNat: empty set
U13: {1}
U21: {1}
U22: {1}
U31: {1}
U41: {1}
s: {1}
plus: {1, 2}
and: {1}
0: empty set
isNatKind: empty set


CSR
  ↳ CSDependencyPairsProof

Context-sensitive rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

The replacement map contains the following entries:

U11: {1}
tt: empty set
U12: {1}
isNat: empty set
U13: {1}
U21: {1}
U22: {1}
U31: {1}
U41: {1}
s: {1}
plus: {1, 2}
and: {1}
0: empty set
isNatKind: empty set

Using Improved CS-DPs we result in the following initial Q-CSDP problem.

↳ CSR
  ↳ CSDependencyPairsProof
QCSDP
      ↳ QCSDependencyGraphProof

Q-restricted context-sensitive dependency pair problem:
The symbols in {U13, U22, s, plus, U131, U221, PLUS} are replacing on all positions.
For all symbols f in {U11, U12, U21, U31, U41, and, U121, U111, U211, U411, AND, U311} we have µ(f) = {1}.
The symbols in {isNat, isNatKind, ISNAT, ISNATKIND, U} are not replacing on any position.

The ordinary context-sensitive dependency pairs DPo are:

U111(tt, V1, V2) → U121(isNat(V1), V2)
U111(tt, V1, V2) → ISNAT(V1)
U121(tt, V2) → U131(isNat(V2))
U121(tt, V2) → ISNAT(V2)
U211(tt, V1) → U221(isNat(V1))
U211(tt, V1) → ISNAT(V1)
U411(tt, M, N) → PLUS(N, M)
ISNAT(plus(V1, V2)) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ISNAT(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
ISNAT(plus(V1, V2)) → ISNATKIND(V1)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
ISNAT(s(V1)) → ISNATKIND(V1)
ISNATKIND(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)
PLUS(N, 0) → U311(and(isNat(N), isNatKind(N)), N)
PLUS(N, 0) → AND(isNat(N), isNatKind(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U411(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
PLUS(N, s(M)) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
PLUS(N, s(M)) → AND(isNat(M), isNatKind(M))
PLUS(N, s(M)) → ISNAT(M)

The collapsing dependency pairs are DPc:

U311(tt, N) → N
U411(tt, M, N) → N
U411(tt, M, N) → M
AND(tt, X) → X


The hidden terms of R are:

isNatKind(V2)

Every hiding context is built from:

and on positions {1}

Hence, the new unhiding pairs DPu are :

U311(tt, N) → U(N)
U411(tt, M, N) → U(N)
U411(tt, M, N) → U(M)
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatKind(V2)) → ISNATKIND(V2)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 3 SCCs with 14 less nodes.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
QCSDP
            ↳ QCSDPReductionPairProof
          ↳ QCSDP
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {U13, U22, s, plus} are replacing on all positions.
For all symbols f in {U11, U12, U21, U31, U41, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatKind, U, ISNATKIND} are not replacing on any position.

The TRS P consists of the following rules:

U(and(x_0, x_1)) → U(x_0)
U(isNatKind(V2)) → ISNATKIND(V2)
ISNATKIND(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
AND(tt, X) → U(X)
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Q is empty.

Using the order
Polynomial interpretation [25]:

POL(0) = 0   
POL(AND(x1, x2)) = 2·x2   
POL(ISNATKIND(x1)) = 2·x1   
POL(U(x1)) = x1   
POL(U11(x1, x2, x3)) = 0   
POL(U12(x1, x2)) = 2·x1   
POL(U13(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U22(x1)) = 0   
POL(U31(x1, x2)) = x2   
POL(U41(x1, x2, x3)) = 2 + 2·x2 + x3   
POL(and(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = 2·x1   
POL(plus(x1, x2)) = x1 + 2·x2   
POL(s(x1)) = 2 + x1   
POL(tt) = 0   

the following usable rules

and(tt, X) → X
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U31(tt, N) → N
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U41(tt, M, N) → s(plus(N, M))

could all be oriented weakly.
Furthermore, the pairs

ISNATKIND(s(V1)) → ISNATKIND(V1)

could be oriented strictly and thus removed.
The pairs

U(and(x_0, x_1)) → U(x_0)
U(isNatKind(V2)) → ISNATKIND(V2)
ISNATKIND(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
AND(tt, X) → U(X)
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
QCSDP
                ↳ QCSDPReductionPairProof
          ↳ QCSDP
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {U13, U22, s, plus} are replacing on all positions.
For all symbols f in {U11, U12, U21, U31, U41, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatKind, U, ISNATKIND} are not replacing on any position.

The TRS P consists of the following rules:

U(and(x_0, x_1)) → U(x_0)
U(isNatKind(V2)) → ISNATKIND(V2)
ISNATKIND(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
AND(tt, X) → U(X)
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Q is empty.

Using the order
Polynomial interpretation [25]:

POL(0) = 1   
POL(AND(x1, x2)) = x1 + 2·x2   
POL(ISNATKIND(x1)) = 2·x1   
POL(U(x1)) = 2·x1   
POL(U11(x1, x2, x3)) = x1 + 2·x2   
POL(U12(x1, x2)) = 0   
POL(U13(x1)) = 0   
POL(U21(x1, x2)) = x1   
POL(U22(x1)) = 0   
POL(U31(x1, x2)) = x2   
POL(U41(x1, x2, x3)) = 2 + 2·x2 + 2·x3   
POL(and(x1, x2)) = 1 + x1 + 2·x2   
POL(isNat(x1)) = 2·x1   
POL(isNatKind(x1)) = 2·x1   
POL(plus(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(s(x1)) = x1   
POL(tt) = 0   

the following usable rules

and(tt, X) → X
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U31(tt, N) → N
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U41(tt, M, N) → s(plus(N, M))

could all be oriented weakly.
Furthermore, the pairs

U(and(x_0, x_1)) → U(x_0)
ISNATKIND(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)

could be oriented strictly and thus removed.
The pairs

U(isNatKind(V2)) → ISNATKIND(V2)
AND(tt, X) → U(X)

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
QCSDP
                    ↳ QCSDependencyGraphProof
          ↳ QCSDP
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {U13, U22, s, plus} are replacing on all positions.
For all symbols f in {U11, U12, U21, U31, U41, and, AND} we have µ(f) = {1}.
The symbols in {isNat, isNatKind, ISNATKIND, U} are not replacing on any position.

The TRS P consists of the following rules:

U(isNatKind(V2)) → ISNATKIND(V2)
AND(tt, X) → U(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 0 SCCs with 2 less nodes.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
QCSDP
            ↳ QCSDPReductionPairProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {U13, U22, s, plus} are replacing on all positions.
For all symbols f in {U11, U12, U21, U31, U41, and, U121, U111, U211} we have µ(f) = {1}.
The symbols in {isNat, isNatKind, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

U121(tt, V2) → ISNAT(V2)
ISNAT(plus(V1, V2)) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U111(tt, V1, V2) → U121(isNat(V1), V2)
U111(tt, V1, V2) → ISNAT(V1)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → ISNAT(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Q is empty.

Using the order
Recursive path order with status [2].
Quasi-Precedence:
[plus2, U413] > U11^13 > [U12^12, ISNAT1] > [U312, U131]
[plus2, U413] > U11^13 > [isNat1, U122] > [U312, U131]
[plus2, U413] > and2 > [U312, U131]
[plus2, U413] > s1 > isNatKind1 > [tt, 0, U221] > [U12^12, ISNAT1] > [U312, U131]
[plus2, U413] > s1 > isNatKind1 > [tt, 0, U221] > [isNat1, U122] > [U312, U131]
[plus2, U413] > s1 > U21^12 > [U12^12, ISNAT1] > [U312, U131]
[plus2, U413] > s1 > U212 > [tt, 0, U221] > [U12^12, ISNAT1] > [U312, U131]
[plus2, U413] > s1 > U212 > [tt, 0, U221] > [isNat1, U122] > [U312, U131]
[plus2, U413] > U113 > [isNat1, U122] > [U312, U131]

Status:
plus2: [2,1]
U12^12: multiset
U312: multiset
U11^13: multiset
U413: [2,3,1]
U113: multiset
U21^12: multiset
U122: [2,1]
and2: multiset
isNatKind1: multiset
0: multiset
U212: multiset
ISNAT1: multiset
U221: multiset
tt: multiset
U131: multiset
s1: multiset
isNat1: [1]


the following usable rules

plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U31(tt, N) → N
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U41(tt, M, N) → s(plus(N, M))

could all be oriented weakly.
Furthermore, the pairs

U121(tt, V2) → ISNAT(V2)
ISNAT(plus(V1, V2)) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U111(tt, V1, V2) → U121(isNat(V1), V2)
U111(tt, V1, V2) → ISNAT(V1)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → ISNAT(V1)

could be oriented strictly and thus removed.
All pairs have been removed.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
QCSDP
                ↳ PIsEmptyProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {U13, U22, s, plus} are replacing on all positions.
For all symbols f in {U11, U12, U21, U31, U41, and} we have µ(f) = {1}.
The symbols in {isNat, isNatKind} are not replacing on any position.

The TRS P consists of the following rules:
none

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Q is empty.

The TRS P is empty. Hence, there is no (P,Q,R,µ)-chain.

↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
QCSDP
            ↳ QCSDPSubtermProof

Q-restricted context-sensitive dependency pair problem:
The symbols in {U13, U22, s, plus, PLUS} are replacing on all positions.
For all symbols f in {U11, U12, U21, U31, U41, and, U411} we have µ(f) = {1}.
The symbols in {isNat, isNatKind} are not replacing on any position.

The TRS P consists of the following rules:

PLUS(N, s(M)) → U411(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U411(tt, M, N) → PLUS(N, M)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Q is empty.

We use the subterm processor [20].


The following pairs can be oriented strictly and are deleted.


PLUS(N, s(M)) → U411(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
The remaining pairs can at least be oriented weakly.

U411(tt, M, N) → PLUS(N, M)
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  x2
PLUS(x1, x2)  =  x2

Subterm Order


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
            ↳ QCSDPSubtermProof
QCSDP
                ↳ QCSDependencyGraphProof

Q-restricted context-sensitive dependency pair problem:
The symbols in {U13, U22, s, plus, PLUS} are replacing on all positions.
For all symbols f in {U11, U12, U21, U31, U41, and, U411} we have µ(f) = {1}.
The symbols in {isNat, isNatKind} are not replacing on any position.

The TRS P consists of the following rules:

U411(tt, M, N) → PLUS(N, M)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, N) → N
U41(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
plus(N, 0) → U31(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 0 SCCs.